Zero to Hero in LangChain: Build GenAI apps using LangChain


Learn all features of LangChain & build Generative AI applications with Memory, RAG, Tools, Agents etc. using LangChain

What you will learn


Get Instant Notification of New Courses on our Telegram channel.

Noteβž› Make sure your π”ππžπ¦π² cart has only this course you're going to enroll it now, Remove all other courses from the π”ππžπ¦π² cart before Enrolling!


Discover the core principles of LangChain and its application in building Generative AI models

Master the creation and use of Prompt Templates, including chat prompt templates and few-shot prompt templates, to optimize AI interactions

Develop complex chain structures, such as LLMChains and Sequential Chains, to enhance the functionality of AI-driven applications

Implement dynamic execution flows using LCEL-based Chains and Runnables, including controlling execution flow and dynamic routing

Utilize memory in LangChain to build advanced conversational AI that can remember and recall user interactions across sessions

Create a Retrieval-Augmented Generation (RAG) application, including document reading, chunking, embedding, and data retrieval from a vector database

Design and integrate custom tools and agents, including memory-enabled agents, into your LangChain applications to extend their capabilities

Construct a graphical user interface (GUI) for your Generative AI applications using Streamlit, enabling user-friendly interactions with your AI models

English
language